Starting from rest, a crate of mass m is pushed up a frictionless slope of angle theta by a horizontal force of magnitude F. Use work and energy to find an expression for the crate's speed v when it is at height h above the bottom of the slope. Express your answer in terms of the variables m, F, theta, h, and free fall acceleration g v=

Respuesta :

Answer:

v =  sqrt[2*(F*h*cot(theta)-mgh)/m]

Explanation:

Work  = KE + Ug

F*r=1/2mv^2+mgh

1/2mv^2=F*r-mgh

v=sqrt[2(F*r-mgh)/m]

r=h/tan(theta)=h*cot(theta)

Answer:

The correct answer is [tex]\sqrt{[2*(\frac{F*h*cot(Q)-mgh)}{m} ]}[/tex]

Explanation:

The work done is defined as the sum of the kinetic energy and the potential energy.

Work  = KE + Mgh

[tex]F*r=\frac{1}{2} mv^2+mgh[/tex]

[tex]\frac{1}{2} mv^2=F*r-mgh[/tex]

[tex]v=\sqrt{[\frac{2(F*r-mgh)/}{m} ]}[/tex]

[tex]r=\frac{h}{tanQ} \\r=h*cot(Q)[/tex]

For more information, refer to the link:-

https://brainly.com/question/19500270?referrer=searchResults