Respuesta :

Answer:

(h o g)(-1))  = 50

Step-by-step explanation:

Here, the functions are defined as

g(x) = 5x -2

[tex]h(x)  = x^{2}  + 1[/tex]

Now, (h 0 g) (x) is defined as the function h of g(x).

⇒  (h 0 g) (x) = h(g(x))

now, by definition of both functions:

h(g(x))  = h(5x-2)  = [tex](5x-2)^{2}  + 1[/tex]

⇒[tex]h(g(x))  = (25x^{2}  + 4 - 20x)+ 1 = 25x^{2}  + 5 - 20x[/tex]

Putting x = -1 in the above expression,

[tex]h(g(-1))  = 25(-1)^{2}  + 5 - 20(-1)\\= 25 + 5 + 20= 50[/tex]

Hence, h(g(-1))  = 50 or

(h o g)(-1))  = 50