Find the cos A and tan B to four decimal places. URGENT

cos A is 0.8511 and tan B is 1.6
Step-by-step explanation:
Find the 3rd length or the hypotenuse.
Pythagoras theorem
[tex]hypotenuse^{2}[/tex] = [tex]adjacent^{2}[/tex] + [tex]opposite^{2}[/tex]
[tex]hypotenuse^{2}[/tex] = [tex]8^{2}[/tex] + [tex]5^{2}[/tex]
[tex]hypotenuse^{2}[/tex] = 64 + 25
hypotenuse = [tex]\sqrt{89}[/tex]
hypotenuse = 9.4
a) Cos A
Data:
Adjacent = 8
Hypotenuse = 9.4
Formula:
Cos (Angle) = [tex]\frac{adjacent}{hypotenuse}[/tex]
Cos A = [tex]\frac{8}{9.4}[/tex]
Cos A = 0.8511
A = [tex]cos^{-1}[/tex] (0.8511)
A = 31.7°
b) Tan B
Data:
Opposite = 8
Adjacent = 5
Formula:
Tan (Angle) = [tex]\frac{opposite}{adjacent}[/tex]
Tan B = [tex]\frac{8}{5}[/tex]
Tan B = 1.6
B = [tex]cos^{-1}[/tex] (1.6)
B = 58°
Therefore, cos A is 0.8511 and tan B is 1.6.
Keyword: cos, tan
Learn more about cos at
#LearnwithBrainly