Respuesta :

Answer:

[tex]P=33.9\ units[/tex]

Step-by-step explanation:

we know that

The perimeter of a rectangle is equal to

[tex]P=2(L+W)[/tex]

where

L is the length of rectangle

W is the width of rectangle

Let

[tex]A(-3,-4),B(-6,-1),C(3,8),D(6,5)[/tex]

Remember that

[tex]W=AB=CD\\L=BC=AD[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

step 1

Find the distance AB

[tex]A(-3,-4),B(-6,-1)[/tex]

substitute in the formula

[tex]d=\sqrt{(-1+4)^{2}+(-6+3)^{2}}[/tex]

[tex]d=\sqrt{(3)^{2}+(-3)^{2}}[/tex]

[tex]d_A_B=\sqrt{18}=4.24\ units[/tex]

step 2

Find the distance BC

[tex]B(-6,-1),C(3,8)[/tex]

substitute in the formula

[tex]d=\sqrt{(8+1)^{2}+(3+6)^{2}}[/tex]

[tex]d=\sqrt{(9)^{2}+(9)^{2}}[/tex]

[tex]d_B_C=\sqrt{162}=12.73\ units[/tex]

step 3

Find the perimeter

[tex]P=2(12.73+4.24)[/tex]

[tex]P=33.94\ units[/tex]

Round to the nearest tenth

[tex]P=33.9\ units[/tex]

Answer:

33.9

Step-by-step explanation: