Respuesta :

Answer:

a) 1

b) 2

c) 2

Step-by-step explanation:

a) [tex]f(2)[/tex] means find the output for [tex]\frac{1}{2}x[/tex] when [tex]x=2[/tex].

[tex]\frac{1}{2}(2)[/tex]

[tex]\frac{2}{2}[/tex]

[tex]1[/tex]

b) [tex]f^{-1}(1)[/tex] means find the output for [tex]2x[/tex] when [tex]x=1[/tex]

[tex]2(1)[/tex]

[tex]2[/tex]

c) If [tex]f[/tex] and [tex]f^{-1}[/tex] are truly inverses then [tex]f(f^{-1}(u))=u[/tex] and [tex]f^{-1}(f(u))=u[/tex] as long as [tex]u[/tex] satisfies the domains.

So we should be able to conclude that [tex]f^{-1}(f(2))=2[/tex] with no work.

However, I will also show work.

[tex]f^{-1}(f(2))[/tex]

[tex]f^{-1}(1)[/tex]    since    [tex]f(2)=1[/tex] from part a.

[tex]2[/tex]            since    [tex]f^{-1}(1)=2[/tex] from part b.