Answer:
a) [A⁻]/[HA] = 0.227
b) [A⁻]/[HA] = 0.991
c) [A⁻]/[HA] = 2.667
Explanation:
In the Henderson-Hasselbalch equation, HA stands from an acid an A⁻ stands from its conjugate base, as follows:
pH = pka + Log [A⁻]/[HA]
pH = 4.874 + Log[CH₃CH₂CO₂⁻]/[CH₃CH₂CO₂H]
4.23 = 4.874 + Log [A⁻]/[HA]
-0.644 = Log [A⁻]/[HA]
[tex]10^{-0.644}[/tex] = [A⁻]/[HA]
0.227 = [A⁻]/[HA]
4.87 = 4.874 + Log [A⁻]/[HA]
-0.004 = Log [A⁻]/[HA]
[tex]10^{-0.004}[/tex] = [A⁻]/[HA]
0.991 = [A⁻]/[HA]
5.30 = 4.874 + Log [A⁻]/[HA]
0.426 = Log [A⁻]/[HA]
[tex]10^{0.426}[/tex] = [A⁻]/[HA]
2.667 = [A⁻]/[HA]