An electron with kinetic energy 1.40 keV circles in a plane perpendicular to a uniform magnetic field. The orbit radius is 30.0 cm. Find (a) the speed of the electron, (No Response) m/s (b) the magnetic field, (No Response) T (c) the frequency of circling, and (No Response) Hz (d) the period of the motion.

Respuesta :

Answer:

(a) [tex]v=22.177\times 10^{12}\ m.s^{-1}[/tex]

(b) [tex]B=420.855\ T[/tex]

(c) [tex]f=11.7647\times 10^{14}\ Hz[/tex]

(d) [tex]T=8.5\times 10^{-14}s[/tex]

Explanation:

Given:

Kinetic Energy of an electron, [tex]KE=1.4\ keV=1400\ eV=1400\times 1.6\times 10^{-19}\ J[/tex]

radius of the orbit, [tex]r=0.3\ m[/tex]

we have:

mass of an electron, [tex]m=9.109\times 10^{-31}\ kg[/tex]

charge on an electron, [tex]q=1.6\times 10^{-19}\ C[/tex]

(a)

we know:

[tex]KE=\frac{1}{2} m.v^2[/tex]

[tex]1400\times 1.6\times 10^{-19}=0.5\times (9.109\times 10^{-31})\times v^2[/tex]

[tex]v=22.177\times 10^{12}\ m.s^{-1}[/tex]

(b)

We also have the relation after the comparison of forces(centripetal and magnetic) on a moving charge in a magnetic field as:

[tex]m.v =q.B.r[/tex] ...........................(1)

where:

B = magnetic field normal to the plane of circulating charge

putting respective values in eq. (1)

[tex](9.109\times 10^{-31})\times (22.177\times 10^{12})=(1.6\times 10^{-19})\times 0.3\times B[/tex]

[tex]B=420.855\ T[/tex]

(d)

angular speed:

[tex]\omega=\frac{v}{r}[/tex]

[tex]\omega=\frac{22.177\times 10^{12}}{0.3}[/tex]

[tex]\omega=73.92\times 10^{12}\ rad.s^{-1}[/tex]

∴Time taken for 1 radian:

[tex]t=\frac{1}{\omega}[/tex]

[tex]t=\frac{1}{73.92\times 10^{12}}\ s.rad^{-1}[/tex]

Now time take for 1 circulation i.e. 2π radians(Time period):

[tex]T=2\pi\times t[/tex]

[tex]T=2\pi\times \frac{1}{73.92\times 10^{12}}[/tex]

[tex]T=8.5\times 10^{-14}s[/tex]

(c)

we know frequency :

[tex]f=\frac{1}{T}[/tex]

[tex]f=\frac{1}{8.5\times 10^{-14}}[/tex]

[tex]f=11.7647\times 10^{14}\ Hz[/tex]