Answer:
the vibrating length of the second string [tex]L_2= 1.209 m[/tex]
Explanation:
Formula for fundamental frequency is
[tex]f=\frac{1}{2L}\sqrt{\frac{T}{\mu} }[/tex]
from this equation we can say that
frequency is inversely proportional to the length of string
⇒[tex]\frac{L_2}{L_1}=\frac{f_1}{f_2} }[/tex].........................1
Here [tex]L_1= 1.25 m[/tex]
[tex]f_1= 130.9 Hz[/tex]
[tex]f_2-f_1= 4.33Hz[/tex]
⇒[tex]f_2= 4.33+130.9= 315.23 Hz[/tex]
now putting values in equation 1 we get
[tex]\frac{L_2}{1.25}=\frac{130.9}{135.23} }[/tex].
[tex]L_2= 1.209 m[/tex]