Answer: [tex]51.3\times 10^3[/tex] kJ
Explanation:
The thermochemical equation for decomposition of ammonium nitrate is:
[tex]NH_4NO_3(s)\rightarrow N_2O(g)+2H_2O(g)[/tex] [tex]\Delta H=-82.1kJ[/tex]
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]
Given mass= 50.0 kg =[tex]50.0\times 10^3g[/tex] (1kg=1000g)
[tex]\text{Number of moles of ammonium nitrate}=\frac{50.0\times 10^3g}{80g/mol}=0.625\times 10^3moles[/tex]
According to stoichiometry:
1 mole of [tex]NH_4NO_3[/tex] gives = 82.1 kJ of heat
Thus [tex]0.625\times 10^3moles[/tex] of [tex]NH_4NO_3[/tex] give =[tex]\frac{82.1}{1}\times 0.625\times 10^3=51.3\times 10^3[/tex] kJ of heat
Thus [tex]51.3\times 10^3[/tex] kJ of heat is evolved from the decomposition of 50.0 kg of ammonium nitrate.