contestada

At what rate will a pendulum clock run on Titan, where the acceleration due to gravity is 1.37 m/s2, if it keeps time accurately on Earth? That is, find the time (in hours) it takes the clock's hour hand to make one revolution on Titan.

Respuesta :

Answer:

The time period on Titan is 2.67 hours.

Explanation:

Given that,

Acceleration = 1.37 m/s²

Time on earth = 1 hour

Period of oscillation on earth

[tex]T_{e}=2\pi\sqrt{\dfrac{L}{g_{e}}}[/tex]

Where, L = length of the pendulum

The length of pendulum will be the same on the Titan.

The period of oscillation on Titan

[tex]T_{t}=2\pi\sqrt{\dfrac{L}{g_{t}}}[/tex]

We need to calculate the time period on Titan

[tex]\dfrac{T_{t}}{T_{e}}=\dfrac{2\pi\sqrt{\dfrac{L}{g_{t}}}}{2\pi\sqrt{\dfrac{L}{g_{e}}}}[/tex]

[tex]\dfrac{T_{t}}{T_{e}}=\sqrt{\dfrac{g_{e}}{g_{t}}}[/tex]

[tex]T_{t}=T_{e}\sqrt{\dfrac{g_{e}}{g_{t}}}[/tex]

Put the value into the formula

[tex]T_{t}=1\times\sqrt{\dfrac{9.8}{1.37}}[/tex]

[tex]T_{t}=2.67\ hours[/tex]

Hence, The time period on Titan is 2.67 hours.

Answer:

[tex]T_t =2.67\ hours[/tex]

Explanation:

given,

acceleration due to gravity in titan = 1.37 m/s²

period of oscillation on earth

[tex]T_e = 2\pi\sqrt{\dfrac{L}{g_e}}[/tex]

L is length of the pendulum

Period of oscillation on Tital

[tex]T_t = 2\pi\sqrt{\dfrac{L}{g_t}}[/tex]

dividing the above equation

[tex]\dfrac{T_t}{T_e} = \sqrt{\dfrac{g_e}{g_m}}[/tex]

time taken by hour hand for one revolution is equal to 1 hr

[tex]T_t= T_e\sqrt{\dfrac{g_e}{g_m}}[/tex]

[tex]T_t= 1 \sqrt{\dfrac{9.8}{1.37}}[/tex]

[tex]T_t =2.67\ hours[/tex]