Answer:
[tex]E_{max}[/tex]= 6.11 10⁻¹² V
Explanation:
For this exercise we must use the Faraday equation
E = - d Φ / dt
Φ = B . A = B A cos θ
The area of a red blood cell that we can consider circular is
A = π R²
The magnetic field has the form
B = B₀ sin (w t)
Suppose the red blood cell is parallel to the field, the angle is zero and the cos 0º = 1. In blood cell size it is constant, so we can take out the area of the integral.
E = -A dB / dt
E = -A B₀ w cos wt
For maximum electromotive force cos θ = ± 1
[tex]E_{max}[/tex] = A Bo w
w = 2π f
R = d / 2
[tex]E_{max}[/tex] = pi (d /2)² B₀ 2π f
[tex]E_{max}[/tex] = ¼ π² d² B₀ f
Let's calculate
[tex]E_{max}[/tex] = ¼ π² (7.00 10⁻⁶)² 1.00 10⁻³ 50.5
[tex]E_{max}[/tex]= 6.11 10⁻¹² V