Use a linear approximation to estimate the following quantity. Choose a value of a to produce a small error. cos 24 degree What is the value found using the linear approximation? Convert any degree measures to radians. cos 24 degree [ ](Type an exact answer, using pi as needed.)

Respuesta :

Answer:

[tex] cos 24^{\circ}\approx 0.9184[/tex]

Step-by-step explanation:

We have to find the value of [tex]cos 24^{\circ}[/tex] using linear approximation.

Let [tex]f(x)= cos x[/tex]

and [tex]a=\frac{\pi}{6}=30^{\circ}[/tex]

Differentiate w.r.t. x

[tex]f'(x)=-sinx[/tex]

Substitute the value of a then , we get

[tex]f(\frac{\pi}{6})=cos\frac{\pi}{6}=\frac{\sqrt3}{2}[/tex]

[tex]f'(\frac{\pi}{3})=-sin\frac{\pi}{6}=-\frac{1}{2}[/tex]

Linear approximation near a is given by the  formula:

[tex]L(x)=f(a)+f'(a)(x-a)[/tex]

We  have 24 degree which is near to 30 degree

Therefore, we have a=30 degree=[tex]\frac{\pi}{6}[/tex] radian

Radian measure=[tex]\frac{\pi}{180}\times degree\;measure[/tex]

Convert 24 degree in to radian measure by above formula

[tex]\frac{\pi}{180}\times 24=\frac{2\pi}{15}[/tex] radian

Substitute the values in the given formula

[tex]L(\frac{2\pi}{15})\approx\frac{\sqrt3}{2}-\frac{1}{2}(\frac{2\pi}{15}-\frac{\pi}{6})[/tex]

[tex]cos(\frac{2\pi}{15})\approx\frac{\sqrt3}{2}-\frac{1}{2}\times (-\frac{\pi}{30})[/tex]

[tex]cos(\frac{2\pi}{15})\approx\frac{\sqrt3}{2}+\frac{\pi}{60}[/tex]

[tex] cos 24^{\circ}\approx 0.9184[/tex]