noxious NO gas can form from N 2 And O2 Gases in automobile engines at high temperatures. If the value of the equilibrium constant, Kc, for this reaction at 25°C is 1.95 ×10−31, what is the value at 2,000°C

Respuesta :

Answer:

The value of equilibrium constant at 2000 C is [tex]6.045\times 10^{-4}[/tex].

Explanation:

To calculate [tex]\Delta H_{vap}[/tex] of the reaction, we use Van't Hoff equation, which is:

[tex]\ln(\frac{K_2}{K_1})=\frac{\Delta H^o}{R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]

where,

[tex]K_1[/tex] = vapor pressure at temperature [tex]T_1[/tex]

[tex]K_2[/tex] = vapor pressure at temperature [tex]T_2[/tex]  

[tex]\Delta H^o[/tex] = Enthalpy change of the reaction= ?

R = Gas constant = 8.314 J/mol K

We have :

[tex]N_2+O_2\rightarrow 2NO[/tex]

Enthalpy of formation of nitrogen gas ,[tex]\Delta H_{f,N_2}= 0kJ/mol[/tex]

Enthalpy of formation of oxygen  gas ,[tex]\Delta H_{f,O_2}= 0 kJ/mol[/tex]

Enthalpy of formation of NO gas ,[tex]]\Delta H^o= 90.3 kJ/mol[/tex]

Enthalpy of the reaction = [tex]\Delta H^o[/tex]

[tex]\Delta H^o=2\times \Delta H^o - (1\times \Delta H_{f,N_2}+1\times \Delta H_{f,O_2})[/tex]

[tex]\Delta H^o=2\times 90.3 kJ/mol - 1\times 0 kJ/mol =1\times 0kJ/mol[/tex]

[tex]\Delta H^o=180.6 kJ/mol = 180,600 J/mol[/tex]

Equilibrium constant at 25°C = [tex]K_1=1.95\times 10^{-31}[/tex]

Equilibrium constant at 2,000°C = [tex]K_2=?[/tex]

[tex]T_1=25^oC=298.15 K, T_2= 2000^oC=2273.15 K[/tex]

By using Van't Hoff equation, te [tex]K_2[/tex] can be calculated:

[tex]\ln(\frac{K_2}{1.95\times 10^{-31}})=\frac{180,600J/mol}{8.314 J/mol K}[\frac{1}{298.15 K}-\frac{1}{2273.15 K}][/tex]

[tex]K_2=6.045\times 10^{-4}[/tex]

The value of equilibrium constant at 2000 C is [tex]6.045\times 10^{-4}[/tex].