Answer:
The numbers are ( 5 + 2i ) and ( 5 - 2i )
Step-by-step explanation:
Given equation as :
Let The number be x
so, 5 × ( x - 5 )² = - 20
or, 5 × ( x² - 10 x + 25 ) = - 20
or, 5 x² - 50 x + 125 = - 20
or, 5 x² - 50 x + 125 + 20 = 0
Or, 5 x² - 50 x + 145 = 0
Or, x² - 10 x + 29 = 0
Now from quadratic equation
x = [tex]\frac{-b\pm \sqrt{b^{2}- 4\times a\times c}}{2\times a}[/tex]
Or, x = [tex]\frac{10\pm \sqrt{-10^{2}- 4\times 1\times 29}}{2\times 1}[/tex]
Or, x = [tex]\frac{10\pm \sqrt{-16}}{2}[/tex]
Or, x = [tex]\frac{10\pm {4i}}{2}[/tex]
∴ x = ( 5 + 2i ) and ( 5 - 2i )
Hence The numbers are ( 5 + 2i ) and ( 5 - 2i ) Answer