f(x) = log 2(x + 7) and g(x) = log 2(3x + 5).
(a) Solve f(x) = 4 What point is on the graph of f?
(b) Solve g(x) = 3. What point is on the graph of g?
(c) Solve f(x) = g(x). Do the graphs off and g intersect? If so, where?
(d) Solve (f + g)(x) = 9
(e) Solve (f-9)(x) = 3

fx log 2x 7 and gx log 23x 5 a Solve fx 4 What point is on the graph of f b Solve gx 3 What point is on the graph of g c Solve fx gx Do the graphs off and g int class=

Respuesta :

Answer:

(a) x = 9, (9,4)

(b) x = 1, (1,3)

(c) x = 1 and the graph of f(x) and g(x) intersects at point (1,3)

(d) [tex]x = - \frac{53}{3}[/tex] or x = 9

(e) [tex]x = - \frac{33}{23}[/tex]

Step-by-step explanation:

We are given that [tex]f(x) = \log_{2} {(x + 7)}[/tex] ....... (1),and  

[tex]g(x) = \log _{2} {(3x + 5)}[/tex] ........ (2)

Now,  

(a) We have to solve f(x) = 4

⇒ [tex]f(x) = \log_{2} {(x + 7)} = 4[/tex]

Converting logarithm to exponent form, we get,

[tex]x + 7 = 2^{4} = 16[/tex]

x = 9 (Answer)

Now, the point on the graph of f(x) will be (9,4) (Answer)

(b) We have to solve g(x) = 3

⇒ [tex]g(x) = \log_{2} {(3x + 5)} = 3[/tex]

Converting logarithm to exponent form, we get,

[tex]3x + 5 = 2^{3} = 8[/tex]

x = 1 (Answer)

Now, the point on the graph of g(x) will be (1,3) (Answer)

(c) We have to solve f(x) = g(x)

⇒ [tex]\log_{2} {(x + 7)} = \log _{2} {(3x + 5)}[/tex]

Now comparing both sides we can write

x + 7 = 3x + 5  

⇒ 2x = 2  

x = 1 (Answer)

Now, at x = 1, [tex]f(x) = \log_{2} {(1 + 7)} = \log_{2} {2^{3}} = 3[/tex]  

So, the graph of f(x) and g(x) intersects at point (1,3) (Answer)

(d) We have to solve (f + g)(x) = 9

⇒ [tex]\log_{2} {(x + 7)} + \log _{2} {(3x + 5)} = 9[/tex]

⇒  [tex]\log_{2} {(x + 7)(3x + 5)} = 9[/tex]

⇒ [tex](x + 7)(3x + 5) = 2^{9} = 512[/tex]

⇒ 3x² + 26x - 477 = 0

⇒ (3x + 53)(3x - 27) = 0

Hence, [tex]x = - \frac{53}{3}[/tex] or x = 9 (Answer)

(e) We have to solve (f - g)(x) = 3

⇒ [tex]\log_{2} {(x + 7)} - \log _{2} {(3x + 5)} = 3[/tex]

⇒ [tex]\log_{2} {\frac{x + 7}{3x + 5}  = 3[/tex]

⇒ [tex]\frac{x + 7}{3x + 5} = 2^{3} = 8[/tex]

⇒ x + 7 = 24x + 40

⇒ 23x = - 33

⇒ [tex]x = - \frac{33}{23}[/tex] (Answer)