Respuesta :
Answer: The final temperature of water is 60°C
Explanation:
To calculate the final temperature of water, we use the equation:
[tex]q=mc\Delta T[/tex]
where,
q = amount of heat absorbed = 8.4 kJ = 8400 J (Conversion factor: 1 kJ = 1000 J)
m = mass of water = 200 g
c = specific heat capacity of water = 4.2 J/g.°C
[tex]\Delta T[/tex] = change in temperature = [tex]T_2-T_1=T_2-50^oC[/tex]
Putting values in above equation, we get:
[tex]8400J=200g\times 4.2J/g.^oC\times (T_2-50^oC)\\\\T_2=60^oC[/tex]
Hence, the final temperature of water is 60°C
The final temperature of the water after dropping the iron ball has been 60[tex]\rm ^\circ C[/tex].
The heat transferred by the iron ball can be given by:
Heat (Q) = mc[tex]\Delta[/tex]T
Q = heat transferred = 8.4 kJ
Q = 8400 J
m = mass = 200 g
c = specific heat = 4.2 J/g.[tex]\rm ^\circ C[/tex]
[tex]\Delta[/tex]T = change in tempertaure = Initial temperature - final temperature
[tex]\Delta[/tex]T = Final temperature - 50 [tex]\rm ^\circ C[/tex]
8400 J = 200 g [tex]\times[/tex] 4.2 J/g.[tex]\rm ^\circ C[/tex] [tex]\times[/tex] (Final temperature - 50 [tex]\rm ^\circ C[/tex])
Final temperature = 60[tex]\rm ^\circ C[/tex].
The final temperature of the water after dropping the iron ball has been 60[tex]\rm ^\circ C[/tex].
For more information about the specific heat, refer to the link:
https://brainly.com/question/21041726