Respuesta :

Answer:

-4     4     4.5     8     20.5     32

Step-by-step explanation:

f[tex]$ \circ  $[/tex] g(x) = f(g(x))

Given,   f(x) = 2x²

and       g(x) = x - 2

Now f(g(x)) = f(x - 2) = 2(x - 2)²

We know that (a - b)² = a² - b² + 2ab

Using this we expand f(g(x)). We get:

                        f(g(x)) = 2{x² - 4x + 4}

Similarly,        g(f(x)) = g(2x²) = 2x² - 2

Now, f(g(-2))    = 2[(-2)² - 4(-2) + 4]     = 2(16)                           = 32.

Also, g(f(-2))   = 2[(-2)² - 2]                = 2(2)                             = 4.

f(g(3.5))  = 2{(3.5)² -4(3.5) + 4} = 2[12.25 - 14 + 4] = 2(2.25)    = 4.5.

g(f(3.5))  = 2{(3.5)² -2} = 2{12.25 - 2}                     = 2(10.25)   = 20.5.

f(g(0))     = 2{0 - 4(0) + 4}  = 2(4)                                               =  8.

g(f(0))     = 2{0 - 2}                         = 2(-2)                                 = -4.

Arranging them in ascending order, we get:

-4     4     4.5     8     20.5     32 would be the sequence.

Otras preguntas