Answer:
Half-life for the reaction is 1.92s
Explanation:
Integrated rate equation for the given second order reaction is-
[tex]\frac{1}{[A]_{t}}=kt+\frac{1}{[A]_{0}}[/tex]
Where [tex][A]_{t}[/tex] is concentration of A after "t" time and [tex][A]_{0}[/tex] is initial concentration of A
At half-life, [tex][A]_{t}=\frac{[A]_{0}}{2}[/tex]
Here [tex][A]_{0}=0.737M[/tex] and [tex]k=0.707M^{-1}s^{-1}[/tex]
Plug-in all the values in the above equation-
[tex]\frac{1}{\frac{[A]_{0}}{2}}=(0.707M^{-1}s^{-1}\times t)+\frac{1}{[A]_{0}}[/tex]
or, [tex]\frac{1}{[A]_{0}}=0.707M^{-1}s^{-1}\times t[/tex]
or, [tex]t=\frac{1}{(0.737M\times 0.707M^{-1}s^{-1})}[/tex]
or, [tex]t=1.92s[/tex]
So, half-life for the reaction is 1.92s