Answer:
[tex]2.82942\times 10^{24}\ W\m^2[/tex]
Explanation:
d = Diameter of spot = 30 μm
r = Radius of spot = [tex]\frac{d}{2}=\frac{30}{2}=15\ mu m[/tex]
P = Power of the laser = [tex]2\times 10^{15}\ W[/tex]
A = Area = [tex]\pi r^2[/tex]
Intensity is given by
[tex]I=\frac{P}{A}\\\Rightarrow I=\frac{2\times 10^{15}}{\pi\times (15\times 10^{-6})^2}\\\Rightarrow I=2.82942\times 10^{24}\ W/m^2[/tex]
The light intensity within this spot is [tex]2.82942\times 10^{24}\ W/m^2[/tex]