Answer:
stress level is 119.67 MPa
Explanation:
given data
strain fracture toughness = 25 MPa
stress = 101 MPa
maximum internal crack length = 8.8 mm
critical internal crack length = 6.3 mm
to find out
stress level
solution
we first find here Y parameter that is
Y = [tex]\frac{Ktc}{\sigma \sqrt{\pi a}}[/tex] ......................1
here σ is stress level that is given and Ktc is fracture toughness and a is half of crack length so solve it
Y = [tex]\frac{25}{101 \sqrt{\pi \frac{8.8*10^{-3}}{2}}}[/tex]
Y = 2.10
so now we solve stress level from equation 1
Y = [tex]\frac{Ktc}{\sigma \sqrt{\pi a}}[/tex]
σ = [tex]\frac{Ktc}{Y \sqrt{\pi a}}[/tex]
put here value
σ = [tex]\frac{25}{2.10 \sqrt{\pi \frac{6.3*10^{-3}}{2}}}[/tex]
σ = 119.67 MPa