Calculate the enthalpy of the reaction 4B(s)+3O2(g)→2B2O3(s) given the following pertinent information: B2O3(s)+3H2O(g)→3O2(g)+B2H6(g), ΔH∘A=+2035 kJ 2B(s)+3H2(g)→B2H6(g), ΔH∘B=+36 kJ H2(g)+12O2(g)→H2O(l), ΔH∘C=−285 kJ H2O(l)→H2O(g), ΔH∘D=+44 kJ Express your answer with the appropriate units.

Respuesta :

Answer:

-2546 kJ

Explanation:

It is possible to obtain the enthalpy of a reaction from the sum of different intermediate reactions.

For the reaction:

4B(s) + 3O₂(g) → 2B₂O₃(s)

The intermediate reactions are:

A- B₂O₃(s) + 3H₂O(g) → 3O₂(g) + B₂H₆(g), ΔH°A= +2035 kJ

B- 2B(s) + 3H₂(g) → B₂H₆(g), ΔH°B= +36 kJ

C- H₂(g) + 1/2O₂(g) → H₂O(l), ΔH°C= -285 kJ

D- H₂O(l) → H₂O(g), ΔH°D= +44 kJ

2B = 4B(s) + 6H₂(g) → 2B₂H₆(g) ΔH°2B= +78 kJ

-2A = 6O₂(g) + 2B₂H₆(g) → 2B₂O₃(s) + 6H₂O(g) ΔH°-2A= -4070 kJ

-6C = 6H₂O(l) → 6H₂(g) + 3O₂(g) ΔH°-6C= +1710 kJ

-6D = 6H₂O(g) → 6H₂O(l) ΔH°-6D = -264 kJ

The sum of 2B - 2A - 6C - 6D produce:

4B(s) + 3O₂(g) → 2B₂O₃(s)

And the enthalpy is: ΔH°2B + ΔH°-2A + ΔH°-6C + ΔH°-6D = -2546 kJ

I hope it helps!