Answer:
1 feet
Explanation:
Frame width = x
The length of the frame will be
[tex]L=4+x+x[/tex] (bottom and top that is why x is added twice)
[tex]\\\Rightarrow L=4+2x[/tex]
The width of the frame will be
[tex]W=3+x+x\\\Rightarrow W=3+2x[/tex]
Area is given by
[tex]A=LW\\\Rightarrow 30=(4+2x)(3+2x)\\\Rightarrow 30=12+14x+4x^2\\\Rightarrow 4x^+14x-18=0[/tex]
Solving the above equation we get
[tex]x=\frac{-14+\sqrt{14^2-4\cdot \:4\left(-18\right)}}{2\cdot \:4}, \frac{-14-\sqrt{14^2-4\cdot \:4\left(-18\right)}}{2\cdot \:4}\\\Rightarrow x=1, -\frac{9}{2}[/tex]
Hence width of the frame is 1 ft