Respuesta :

Answer:

B. 4

Step-by-step explanation:

Given :

[tex]log_x(\frac{1}{8})=-\frac{3}{2}[/tex]

The logarithm function can be converted to an exponential function as

[tex][\log_ab=c][/tex] can be expressed as [tex][a^c=b][/tex]

Similarly for the given expression

[tex]log_x(\frac{1}{8})=-\frac{3}{2}[/tex]

We can write,

[tex]x^{-\frac{3}{2}}=\frac{1}{8}[/tex]

Using property of negative exponents [tex][a^{-b}=\frac{1}{a^b}][/tex]

[tex]\frac{1}{x^{\frac{3}{2}}}=\frac{1}{8}[/tex]

So we can write that  as:

[tex]x^{\frac{3}{2}}=8[/tex]

Writing the exponents in radical form as [tex]a^{\frac{b}{c}}=(\sqrt[c]{a})^b[/tex]

[tex](\sqrt{x})^3=8[/tex]

Taking cube root both sides to remove the cube.

[tex]\sqrt[3]{(\sqrt{x})^3}=\sqrt[3]{8}[/tex]

[tex]\sqrt x=2[/tex]

Squaring both sides to remove square root.

[tex](\sqrt x)^2=2^2[/tex]

∴ [tex]x=4[/tex]