Answer:
The speed of the steam is 477.4 m/s.
Explanation:
Given that,
Temperature
[tex]T_{1}= 280^{\circ}C[/tex]
[tex]T_{2}=220^{\circ}C[/tex]
Pressure
[tex]P_{1}= 6.00\ bar[/tex]
[tex]P_{2}=3.00\ bar[/tex]
Specific enthalpy of steam at 280°C = 3020 kJ/kg
Specific enthalpy of steam at 220°C = 2906 kJ/kg
We need to calculate the speed of the steam
Using balance equation
[tex]\Delta H+\Delta E_{k}+\Delta E_{p}=Q-W_{s}[/tex]
[tex]\Delta E_{k}=-\Delta H[/tex]
Here, [tex]\Delta E_{p}=Q=W_{s}=0[/tex]
[tex]\dfrac{1}{2}mv^2=m(H_{out}-H_{in})[/tex]
[tex]v^2=2(H_{out}-H_{in})[/tex]
Put the value into the formula
[tex]v^2=2\times(3020-2906)\times10^{3}[/tex]
[tex]v=\sqrt{2\times(3020-2906)\times10^{3}}[/tex]
[tex]v=477.4\ m/s[/tex]
Hence,The speed of the steam is 477.4 m/s.