A flywheel with radius 0.300 m starts from rest and accelerates with a constant angular acceleration of 0.600 rad/s2. For a point on the rim of the flywheel, what are the magnitudes of the tangential, radial, and resultant accelerations after 2.00 s of acceleration

Respuesta :

Answer:

at = 0.18 m/s²

ac = 0.432 m/s²

a = 0.468 m/s² m/s²

Explanation:

Tangential acceleration is calculated as follows:

at = α*R     Formula (1)

Centripetal  or radial acceleration is calculated as follows:

ac =ω²*R   Formula (2)

We apply the equations of circular motion uniformly accelerated :

ωf= ω₀ + α*t  Formula (3)

Where:

α : angular acceleration (rad/s²)

t : time interval (s)  

ω₀ : initial angular speed ( rad/s)

ωf : final angular speed  ( rad/s)

R : radius of the circular path (m)

at:  tangential acceleration, (m/s²)

ac: centripetal acceleration, (m/s²)

Data:

R = 0.3 m  : radius of the flywheel

ω₀ = 0

α = 0.6 rad /s²

t = 2 s

Calculation of  ωf at t= 2 s

We apply the Formula (3) :

ωf= ω₀ + α*t  

ωf= 0 + ( 0.6)*(2)

ωf =1.2 rad/s

Calculation of the tangential acceleration

We apply the Formula (1)

at = α*R =  ( 0.6)*(0.3) = 0.18 m/s²

Calculation of the radial acceleration

We apply the Formula (2)

ac =ω²*R  = (  1.2)²*(0.3) = 0.432 m/s²

Calculation of the resultant acceleration (a)

[tex]a= \sqrt{(a_{t})^{2}+(a_{c})^{2}  }[/tex]

[tex]a= \sqrt{( 0.18)^{2}+(0.432)^{2}  }[/tex]

a= 0.468 m/s²

The tangential acceleration of the flywheel is 0.18rad/s²

The radial acceleration of the flywheel is 0.432rad/s²

The resultant acceleration is 0.468rad/s²

The formula for calculating the tangential acceleration is expressed as:

[tex]a_t=\alpha R[/tex]

[tex]\alpha[/tex] is the angular acceleration

t is the time taken

Given the following parameters

[tex]\alpha[/tex] = 0.6rad/s²

R = 0.300secs

Substitute the given parameters into the formula:

[tex]a_t=0.6 \times 03\\a_t=0.18rad/s^2[/tex]

Hence the tangential acceleration of the flywheel is 0.18m/s²

Get the radial acceleration:

[tex]a_r=\omega^2r[/tex]

[tex]\omega[/tex] is the angular speed

Get the angular speed

[tex]\omega_f= \omega_0+\alpha t\\\omega_f= 0+0.6(2)\\\omega_f=1.2rad/s[/tex]

Get the radial acceleration:

[tex]a_r=\omega^2r\\a_r=1.2^2(0.3)\\a_r=0.432rad/s^2[/tex]

Hence the radial acceleration is 0.432rad/s²

Get the resultant acceleration:

[tex]a=\sqrt{a_t^2+a_r^2}\\a=\sqrt{0.18^2+0.432^2} \\a=\sqrt{0.0324+0.186624}\\a=\sqrt{0.219024} \\a=0.468rad/s^2[/tex]

Hence the resultant acceleration is 0.468rad/s²

Learn more here: https://brainly.com/question/3385759