Respuesta :

The solution of given system of equations is

x=8, y=3

Step-by-step explanation:

Given equations are:

[tex]-2x+9y=11\ \ \ \ \ Eqn\ 1-5x+2y=-34\ \ \ \ \ Eqn\ 2[/tex]

Multiplying eqn 1 by 5

[tex]-10x+45y=55\ \ \ \ Eqn\ 3[/tex]

Multiplying eqn 2 by 2

[tex]-10x+4y=-68\ \ \ \ Eqn 4[/tex]

Subtracting eqn 4 from eqn 3

[tex]-10x+45y-(-10x+4y)=55-(-68)\\-10x+45y+10x-4y=55+68\\41y=123[/tex]

Dividing both sides by 41

[tex]\frac{41y}{41}=\frac{123}{41}\\y=3[/tex]

Putting y=3 in equation 1

[tex]-2x+9(3)=11\\-2x+27=11\\-2x=11-27\\-2x=-16[/tex]

Dividing both sides by -2

[tex]\frac{-2x}{-2}=\frac{-16}{-2}\\x=8[/tex]

Hence,

The solution of given system of equations is

x=8, y=3

Keywords: Linear equations, Variables

Learn more about linear equations at:

  • brainly.com/question/8224301
  • brainly.com/question/8180193

#LearnwithBrainly