Respuesta :

Answer:

The value of given log function is 1 .

Step-by-step explanation:

Given as :

Logb A = 3

Logb C = 2

Logb D = 5

Now from log property

if , Logb x = c    , then  x = [tex]b^{c}[/tex]

So,

Logb A = 3 , then A =  [tex]b^{3}[/tex]

Logb C = 2 , then C =  [tex]b^{2}[/tex]

Logb D = 5 , then D =  [tex]b^{5}[/tex]

Now, According to question

[tex]Logb\frac{D^{2}}{C^{3}A}[/tex]

So, [tex]Logb\frac{(b^{5})^{2}}{(b^{2})^{3}\times b^{3}}[/tex]

Or, [tex]Logb\frac{b^{10}}{b^{6}\times b^{3}}[/tex]

or, [tex]Logb\frac{b^{10}}{b^{9}}[/tex]

Now, since base same So,

[tex]log_{b}b^{10-9}[/tex]

∴ [tex]log_{b}b^{1}[/tex]

Now log property

[tex]log_{b}b[/tex] = 1

Hence The value of given log function is 1 . answer