Answer:
131.39863 m/s
683205.94 Joules
Explanation:
m = Mass of person = 80 kg
g = Acceleration due to gravity = 9.81 m/s²
h = Height of the drop = 880 m
v = Speed
[tex]v_m[/tex] = Maximum speed = 140 km/h
Here the Potential and Kinetic energies are conserved
[tex]P_i=K_f\\\Rightarrow mgh=\frac{1}{2}mv^2\\\Rightarrow v=\sqrt{2gh}\\\Rightarrow v=\sqrt{2\times 9.81\times 880}\\\Rightarrow v=131.39863\ m/s[/tex]
The velocity of Fritz Strobl is 131.39863 m/s
Taking friction into consideration
[tex]P_i=W_f+K_f\\\Rightarrow mgh=W_f+\frac{1}{2}mv_m^2\\\Rightarrow W_f=mgh-\frac{1}{2}mv_m^2\\\Rightarrow W_f=80\times 9.81\times 880-\frac{1}{2}\times 9.81\times \frac{140}{3.6}^2\\\Rightarrow W_f=683205.94\ J[/tex]
The work done by friction is 683205.94 Joules