Answer:
[tex]v=65m/s[/tex]
Explanation:
Friction force to find the speed of the block at the instant of collision so
[tex]E_1=\frac{1}{2}*K*x^2[/tex]
[tex]x=4.16cm[/tex]
[tex]E_1=\frac{1}{2}*1.93N/cm*(4.16cm)^2[/tex]
[tex]E_1=0.167 J[/tex]
[tex]E_2=117mJ=0.117J[/tex]
[tex]K_E=E_1+E_2=284J[/tex]
[tex]K_E=\frac{1}{2}*m*v^2[/tex]
Solve to v' to find the velocity
[tex]v=\sqrt{\frac{2*K_E}{m}}[/tex]
[tex]v=\sqrt{\frac{2*0.283J}{1.34kg}}=\sqrt{0.424 m^2/s^2}[/tex]
The speed of the block at the instant of collision with the spring is
[tex]v=65m/s[/tex]