evaluate the expression for the given values of x.

Answer:
The values are as follows:
20
11
2
-1
8
Step-by-step explanation:
We are given the polynomial [tex]$ x^3 + 3x^2 - 7x + 2 $[/tex]
To find the value of the polynomial for different values of 'x' simply substitute the given value of x, to determine the answer.
(i) x = -2.
⇒ [tex]$ (-2)^3 + 3(-2)^2 - 7(-2) + 2 = -8 + 12 + 14 + 2 = -8 + 28 $[/tex]
= 20.
The value of the polynomial at x = -2 is 20.
(ii) Similarly, x = -1.
[tex]$ (-1)^3 + 3(-1)^2 - 7(-1) + 2 = -1 + 3 + 7 + 2 = -1 + 12 $[/tex]
= 11
(iii) x = 0
[tex]$ 0 + 0 + 0 + 2 $[/tex]
= 2
(iv) x = 1
[tex]$ 1^3 + 3(1)^3 - 7(1) + 2 = 1 + 3 - 7 + 2 = 6 - 7 $[/tex]
= -1
(v) x = 2
[tex]$ 2^3 + 3(2)^2 - 7(2) + 2 = 8 + 12 -14 + 2 $[/tex]
= 8.