Respuesta :
Answer:
(a) 0.426 rad/s
(b) Before 296.225 J and After 148.5 J
Explanation:
At the center of merry-go-round, the person's weight is 75 Kg with moment of inertia of 820 kgm2 and the initial angular velocity is 0.85 rad/s
At the edge, the new angular velocity gained depends on the new moment of inertia
Here, the final moment of inertia is given by Initial moment of inertia + [tex]MR^{2}[/tex] where M is the mass and R is the radius of merry-go-round
Final moment of inertia=[tex]820+(75*3.3^{2})=1636.75[/tex]
From the law of conservation of angular momentum as torque is zero
[tex]I_i\times\omega_1=I_f\times\omega_2[/tex] and making [tex]\omega_2[/tex] the subject then
[tex]\omega_2=\frac {I_i\times\omega}{I_f}[/tex]
where [tex]I_i[/tex] and [tex]I_f[/tex] are initial and final moment of inertia, [tex]\omega_1[/tex] and [tex]\omega_2[/tex] are initial and final angular velocity.
Substituting the provided values
[tex]\omega_2=\frac {0.85\times 820}{1636.75}=0.425843898\approx 0.426 rad/s[/tex]
(b)
Initial rotational kinetic energy is given by
[tex]0.5I_i\times \omega_1^{2}[/tex]
[tex]KE_i=0.5\times 820\times 0.85^{2}=296.225 J[/tex]
The final rotational kinetic energy is given by
[tex]0.5I_f\times \omega_2^{2}[/tex]
[tex]KE_i=0.5\times 1636.75\times 0.426^{2}\approx 148.5 J[/tex]
a. The angular velocity when the person reaches the edge is 0.42 rad/s.
b. The rotational kinetic energy of the system of platform plus person before and after the person's walk are 296.23 Joules and 140.44 Joules respectively.
Given the following data:
- Mass of person = 75 kg
- Initial radius = 3.3 m
- Initial angular speed = 0.85 rad/s
- Moment of inertia (person + platform) = 820 [tex]kgm^2[/tex]
a. To calculate the angular velocity when the person reaches the edge, we would use the law of conservation of angular momentum:
Applying the law of conservation of angular momentum:
[tex]I_i\omega_i = I_f\omega_f[/tex] ....equation 1.
Where:
- [tex]I_i[/tex] is the initial moment of inertia.
- [tex]\omega_i[/tex] is the initial angular speed.
- [tex]I_f[/tex] is the final moment of inertia.
- [tex]\omega_f[/tex] is the final angular speed.
First of all, we would determine both the initial and final angular momentum of the person and the platform.
Note: The initial angular momentum of the person would be zero (0).
For initial angular momentum:
[tex]I_i\omega_i = 0+820 \times 0.85\\\\I_i\omega_i = 697\;kgm^2/s[/tex] ....equation 2.
For final angular momentum:
[tex]I_f\omega_f = 75(3.3)^2\omega_f + 820\omega_f \\\\I_f\omega_f = 75(10.89)\omega_f + 820\omega_f\\\\I_f\omega_f = 816.75\omega_f + 820\omega_f\\\\I_f\omega_f = 1636.75\omega_f \;kgm^2/s[/tex].....equation 3.
Equating both eqn 2 and eqn 3, we have:
[tex]679 = 1636.75\omega_f\\\\\omega_f = \frac{679}{1636.75} \\\\\omega_f = 0.42 \;rad/s[/tex]
b. To calculate the rotational kinetic energy of the system of platform plus person before and after the person's walk.
Before the person's walk:
[tex]K.E_R =\frac{1}{2} I_i\omega_i^2\\\\K.E_R =\frac{1}{2} \times 820 \times 0.85^2\\\\K.E_R =410\times 0.7225\\\\K.E_R = 296.23 \;Joules[/tex]
After the person's walk:
[tex]K.E_R =\frac{1}{2} I_f\omega_f^2 + \frac{1}{2} I_f\omega_f^2\\\\K.E_R =\frac{1}{2} \times 820 \times 0.42^2 + \frac{1}{2} \times 75(3.3)^2 \times 0.42^2\\\\K.E_R =410\times 0.1716 + 408.375\times 0.1716\\\\K.E_R = 70.36+70.08\\\\K.E_R = 140.44 \;Joules[/tex]
Read more: https://brainly.com/question/23153766