An ant rotates its mandible, of length 1.30 mm and mass 130 μg (which we can model as a uniform rod rotated about its end), at a high angular speed. As the tip strikes the ground, it undergoes an angular acceleration of 3.5×108rad/s2.

Respuesta :

Answer:

[tex]1.97\times10^{-2} N[/tex]

Explanation:

The expression for torque

[tex]\tau=I\alpha[/tex]

I= moment of inertia and α = angular acceleration

now,

[tex]L\times F= \frac{ML^2}{3} \alpha[/tex]

⇒[tex]F= \frac{ML}{3} \alpha[/tex]

plugging values we get

[tex]F= \frac{130\times10^{-9}\times1.3\times10^{-3}}{3} \3.5\times10^8[/tex]

= [tex]1.97\times10^{-2} N[/tex]

Hence, the required force is  [tex]1.97\times10^{-2} N[/tex]

Answer:

The force on the trip is [tex]1.97\times10^{-2}\ N[/tex].

Explanation:

Given that,

Length = 1.30 mm

Mass = 130 μg

Angular acceleration [tex]\alpha=3.5\times10^{8}\ rad/s^2[/tex]

If we assume that the tip of the mandible hits perpendicular to the ground, what is the force on the tip

We need to calculate the torque

Using formula of torque

[tex]\tau=I\times\alpha[/tex]

Put the value of torque and moment of inertia into the formula

[tex]F\times l=\dfrac{ML^2}{3}\times\alpha[/tex]

[tex]F=\dfrac{ML}{3}\times\alpha[/tex]

Put the value into the formula

[tex]F=\dfrac{130\times10^{-9}\times1.30\times10^{-3}}{3}\times3.5\times10^{8}[/tex]

[tex]F=0.0197\ N[/tex]

[tex]F=1.97\times10^{-2}\ N[/tex]

Hence, The force on the trip is [tex]1.97\times10^{-2}\ N[/tex].