A random sample of size n1 = 25, taken from a normal population with a standard deviation σ1 = 5, has a mean ¯x1 = 80. a second random sample of size n2 = 36, taken from a different normal population with a standard deviation σ2 = 3, has a mean ¯x2 = 75. find a 94% confidence interval for μ1 − μ2.

Respuesta :

Answer:

4.08 < μ1 − μ2 < 5.94

Step-by-step explanation:

The confidence level interval for μ is given by;

    = ⁻x ± z*[tex]\frac{σ}{\sqrt{n} }[/tex]

where  n = Sample size

            σ = Standard deviation

             ⁻x =  Mean

For  a Confidence level = 94%, the critical value is z = 1.88

Considering the first random sample:

              n1 = 25

              σ1 = 5

                ⁻x1 = 80

The confidence level interval for μ1 is given by;

   μ1 = [tex]80[/tex] ± 1.88 × [tex]\frac{5}{ \sqrt{25} }[/tex]

   μ1 = 80  ± (1.88 ×1) = 80  ± 1.88

    μ1 = 78.12 < μ1 < 81.88

For the second random sample

              n2 = 36

              σ2 = 3

                ⁻x2 = 75

The confidence level interval for μ2 is given by;

  μ2 = [tex]75[/tex] ± 1.88 × [tex]\frac{3}{ \sqrt{36} }[/tex]

   μ2 = 75  ± (1.88 × 0.5) = 75 ± 0.94

   μ2 = 74.04 < μ2 < 75.94

For the interval μ1 − μ2,

The confidence level is 78.12 - 74.04 < μ1 − μ2 < 81.88 - 75.94

4.08 < μ1 − μ2 < 5.94

A 94% confidence interval for μ1 − μ2 of the random sample is [tex]4.06 < \mu_1 - \mu_2 < 5.94[/tex]

How to detemine the confidence interval?

The given parameters are:

Sample size 1, [tex]n_1 = 25[/tex]

Standard deviation 1, [tex]\sigma_1 = 5\\[/tex]

Mean 1, [tex]\bar x_1 = 80[/tex]

Sample size 2, [tex]n_2 = 36[/tex]

Standard deviation 2, [tex]\sigma_2= 3[/tex]

Mean 2, [tex]\bar x_2 = 75[/tex]

The confidence interval for the mean is calculated by:

[tex]CI = \bar x \pm z* \frac{\sigma}{\sqrt n}[/tex]

At 94% confidence interval, the critical value is:

[tex]z = 1.88[/tex]

For the first random sample, we have:

[tex]CI_1 = 80 \pm 1.88 * \frac{5}{\sqrt {25}}[/tex]

[tex]CI_1 = 80 \pm 1.88[/tex]

Expand

[tex]CI_1 = (80 - 1.88, 80 + 1.88)[/tex]

[tex]CI_1 = (78.12, 81.88)[/tex]

For the second random sample, we have:

[tex]CI_2 = 75 \pm 1.88 * \frac{3}{\sqrt {36}}[/tex]

[tex]CI_2 = 75 \pm 1.88 * 0.5[/tex]

[tex]CI_2 = 75 \pm 0.94[/tex]

Expand

[tex]CI_2 = (75 - 0.94, 75 + 0.94)[/tex]

[tex]CI_2 = (74.06, 75.94)[/tex]

Calculate the difference

[tex]CI_1 - CI_2 = (78.12 - 74.06, 81.88 - 75.94)[/tex]

Evaluate the difference

[tex]CI_1 - CI_2 = (4.06, 5.94)[/tex]

Rewrite as:

[tex]4.06 < \mu_1 - \mu_2 < 5.94[/tex]

Hence, a 94% confidence interval for μ1 − μ2 is [tex]4.06 < \mu_1 - \mu_2 < 5.94[/tex]

Read more about confidence intervals at:

https://brainly.com/question/17097944