Answer:
s = 1.7 m
Explanation:
from the question we are given the following:
Mass of package (m) = 5 kg
mass of the asteriod (M) = 7.6 x 10^{20} kg
radius = 8 x 10^5 m
velocity of package (v) = 170 m/s
spring constant (k) = 2.8 N/m
compression (s) = ?
Assuming that no non conservative force is acting on the system here, the initial and final energies of the system will be the same. Therefore
• Ei = Ef
• Ei = energy in the spring + gravitational potential energy of the system
• Ei = \frac{1}{2}ks^{2} + \frac{GMm}{r}
• Ef = kinetic energy of the object
• Ef = \frac{1}{2}mv^{2}
• \frac{1}{2}ks^{2} + (-\frac{GMm}{r}) = \frac{1}{2}mv^{2}
• s = [tex]\sqrt{\frac{m}[k}(v^{2}+\frac{2GM}{r})}[/tex]
s = [tex]\sqrt{\frac{5}[2.8 x 10^5}(170^{2}+\frac{2 x 6.67 x10^{-11} x 7.6 x 10^{20}}{8 x 10^5})}[/tex]
s = 1.7 m