Answer:
[tex]a=g\left(\frac{\rho_a}{\rho_b}-1\right)[/tex]
45.03681 m/s²
Explanation:
[tex]F_b[/tex] = Buoyant force
W = Weight of the balloon
[tex]\rho_a[/tex] = Density of air = 1.23 kg/m³
[tex]\rho_b[/tex] = Density of balloon = 0.22 kg/m³
[tex]v_a[/tex] = Volume of air
[tex]v_b[/tex] = Volume of balloon
[tex]F_b=\rho_av_bg[/tex]
[tex]W=\rho_bv_bg[/tex]
g = Acceleration due to gravity = 9.81 m/s²
The net force acting on the balloon is
[tex]F=F_b-W\\\Rightarrow F=\rho_av_bg-\rho_bv_bg\\\Rightarrow \rho_bv_ba=\rho_av_bg-\rho_bv_bg\\\Rightarrow \rho_bv_ba=v_bg(\rho_a-\rho_b)\\\Rightarrow a=\frac{g}{\rho_b}(\rho_a-\rho_b)\\\Rightarrow a=g\left(\frac{\rho_a}{\rho_b}-1\right)[/tex]
The equation is [tex]a=g\left(\frac{\rho_a}{\rho_b}-1\right)[/tex]
[tex]a=g\left(\frac{\rho_a}{\rho_b}-1\right)\\\Rightarrow a=9.81\times \left(\frac{1.23}{0.22}-1\right)\\\Rightarrow a=45.03681\ m/s^2[/tex]
The acceleration of the balloon is 45.03681 m/s²