Suppose one of the Global Positioning System satellites has a speed of 4.42km/s at perigee and a speed of 3.64km/s at apogee. If the distance from the center of the Earth to the satellite at perigee is 2.24×104 , what is the corresponding distance at apogee?

Respuesta :

Answer:[tex]2.71\times 10^4 km[/tex]

 

Explanation:

Given

Speed of satellite [tex]v_1=4.42 km/s[/tex] At Perigee

Speed at apogee [tex]v_2=3.64 km/s[/tex]

Distance from center to Perigee [tex]r_1=2.24\times 10^{4} Km[/tex]

Let [tex]r_2[/tex] be the distance of Apogee

According to Kepler's Second law angular Momentum is conserved

[tex]mv_1r_1=mv_1r_2[/tex]

[tex]v_1r_1=v_2r_2[/tex]

[tex]4.42\times 2.24\times 10^4=3.64\times r_2[/tex]

[tex]r_2=\frac{4.42}{3.64}\times 2.24\times 10^4[/tex]

[tex]r_2=2.71\times 10^4 Km[/tex]