A specimen of a 4340 steel alloy with a plane strain fracture toughness of 54.8 MPa m (50 ksi in. ) is exposed to a stress of 1090 MPa (158100 psi). Assume that the parameter Y has a value of 1.11. (a) If the largest surface crack is 0.8 mm (0.03150 in.) long, determine the critical stress σc.

Respuesta :

To solve this problem it is necessary to apply the concepts related to stress failure, stress and last module Young.

Critical stress by definition is given as,

[tex]\sigma_c = \frac{K_{IC}}{Y\sqrt{\pi a}}[/tex]

Where,

[tex]K_{IC} =[/tex]Strain fracture toughness

Y = Young's module

a = Length surface crack

Our values are given as,

[tex]K_{IC} = 54.8Mpa[/tex]

[tex]Y = 1.11[/tex]

[tex]a = 0.8*10^{-3}m[/tex]

Replacing in our previous equation we have,

[tex]\sigma_c = \frac{54.8}{(1.11)\sqrt{\pi(0.8*10^{-3})}}[/tex]

[tex]\sigma_c = 984.77Mpa[/tex]

Therefore the critical stress is 984.77Mpa