A 2.20-kg hoop 1.20 m in diameter is rolling to the right without slipping on a horizontal floor at a steady 2.60 rad/s. (a) How fast is its center moving? (b) What is the total kinetic energy of the hoop? (c) Find the velocity vector of each of the following points, as viewed by a person at rest on the ground: (i) the highest point on the hoop; (ii) the lowest point on the hoop; (iii) a point on the right side of the hoop, midway between the top and the bottom. (d) Find the velocity vector for each of the points in part (c), but this time as viewed by someone moving along with the same velocity as the hoop.

Respuesta :

Answer:

(a)[tex]v_c=1.56\ m.s^{-1}[/tex]

(b)[tex]KE=5.3539\ J[/tex]

(c-i)[tex]v_h=3.12\ m.s^{-1}[/tex] in straight rightward direction.

(c-ii)[tex]v_l=0\ m.s^{1}[/tex]

(c-iii)[tex]v_r=2.2062\ m.s^{-1}[/tex]  [tex]\theta=45^{\circ}[/tex] to the bottom of horizontal right.

(d-i) [tex]v_h=1.56\ m.s^{-1}[/tex] to the horizontal right.

(d-ii)[tex]v_l=1.56\ m.s^{-1}[/tex]  horizontally left

(d-iii)[tex]v_r=1.56\ m.s^{-1}[/tex]  moving vertically downward

Explanation:

Given:

mass of hoop, [tex]m=2.2\ kg[/tex]

diameter of hoop, [tex]d=1.2\ m[/tex]

angular speed of hoop, [tex]\omega=2.6\ rad.s^{-1}[/tex]

So, time taken for 1 revolution(2π radians) of the hoop:

[tex]T=\frac{2\pi}{2.6}\ s[/tex]

(a)

The center will move linearly in the right direction.

circumference of the hoop:

[tex]c=\pi.d[/tex]

[tex]c=\pi\times 1.2[/tex]

Now the speed of center:

[tex]v_c=\frac{c}{T}[/tex]

[tex]v_c=\frac{\pi\times 1.2}{(\frac{2\pi}{2.6})}[/tex]

[tex]v_c=1.56\ m.s^{-1}[/tex]

(b)

Moment of inertia for ring about central axis:

[tex]I=m.r^2[/tex]

where 'r' is the radius of the hoop.

[tex]I=2.2\times 0.6^2[/tex]

[tex]I=0.792\ kg.m^2[/tex]

∴Kinetic energy

[tex]KE=\frac{1}{2} I.\omega^2+\frac{1}{2} m.v_c^2[/tex]

[tex]KE=\frac{1}{2} 0.792\times 2.6^2+\frac{1}{2} 2.2\times 1.56^2[/tex]

[tex]KE=5.3539\ J[/tex]

(c) (i)

The highest point on the hoop will have the maximum velocity.

Given by:

[tex]v_h=\omega \times d[/tex]

[tex]v_h=2.6\times 1.2[/tex]

[tex]v_h=3.12\ m.s^{-1}[/tex] in straight rightward direction.

(c) (ii)

Lowest point n the hoop will seem stationary for an observer on the ground.

[tex]v_l=0\ m.s^{1}[/tex]

(c) (iii)

Velocity of the right-most point of the loop.

This velocity will have 2 components horizontal right and vertical down.

[tex]v_r=\sqrt{v_c^2+v_d^2}[/tex]

here: [tex]v_d[/tex] is the downward component.

[tex]v_d=r.\omega[/tex]

[tex]v_d=1.56\ m.s^{-1}[/tex]

[tex]\therefore v_r=\sqrt{1.56^2+1.56^2}[/tex]

[tex]v_r=2.2062\ m.s^{-1}[/tex]

[tex]tan\theta=\frac{1.56}{1.56}[/tex]

[tex]\theta=45^{\circ}[/tex] to the bottom of horizontal right.

When the observer is moving in the same direction with [tex]v_c[/tex] velocity:

(d) i

Then,

[tex]v_h=\omega \times r[/tex]

[tex]v_h=2.6\times 0.6[/tex]

[tex]v_h=1.56\ m.s^{-1}[/tex] to the horizontal right.

(d) ii

The bottom point of hoop will seem to move horizontally left with velocity:

[tex]v_l=r.\omega[/tex]

[tex]v_l=0.6\times 2.6[/tex]

[tex]v_l=1.56\ m.s^{-1}[/tex]  horizontally left

(d) iii

Contrary to the case of stationary observer, this observer will see the extreme right point of the hoop moving vertically downward with a velocity:

[tex]v_r=r.\omega[/tex]

[tex]v_r=0.6\times 2.6[/tex]

[tex]v_r=1.56\ m.s^{-1}[/tex]

A rotating hoop in translational motion, without slipping, moves fastest at

the top.

The correct responses are;

(a) 1.56 m/s

(b) 5.35392 J

(c) (i) The velocity at the highest point on the hoop is 3.12·i

(ii) The velocity vector at the lowest point on the hoop is 0

(iii) The velocity vector midway on the right is 1.56·i  - 1.56·j

(d) (i) The (relative) velocity vector at the highest point is 1.56·i

(ii) The (relative) vector velocity at the lowest point is -1.56·i

(iii) The velocity vector at the mid right hoop is -1.56·j

Reasons:

Given information;

Mass of the hoop = 2.20 kg

The hoop diameter, D = 1.20 m

Hoop rotational speed, ω = 2.60 rad/s

Required:

(a) The speed of the center of the hoop

Solution:

The center of the hoop has only translational motion, v, given as follows;

[tex]v = \omega \times Radius, \ r[/tex]

[tex]r=\dfrac{D}{2} = \dfrac{1.2}{2} = 0.6[/tex]

The radius of the hoop, r = 0.6 m

Therefore;

[tex]v_{htr}= \omega \times \dfrac{D}{2}[/tex]

Therefore;

[tex]v_{htr}= 2.60 \times \dfrac{1.2}{2} = 1.56[/tex]

The speed of the center of the hoop, [tex]v_{htr}[/tex] = 1.56 m/s

(b) The total kinetic energy of the hoop, K.E., is given as follows;

[tex]K.E. = \mathbf{\dfrac{1}{2} \cdot m \cdot v_{htr}^2 + \dfrac{1}{2} \cdot I \cdot \omega^2}[/tex]

Therefore

[tex]I = \ m\cdot r^2[/tex]

[tex]K.E. = \dfrac{1}{2} \times 2.20 \cdot 1.56^2 + \dfrac{1}{2} \times 2.2 \times 0.6^2 \times2.6^2 = 5.35392[/tex]

The total kinetic energy of the hoop, K.E. = 5.35392 J

(c) The velocity vectors as viewed by a someone at rest on the ground are;

(i) The tangential velocity vector of the top of the hoop is tangential to the

top, therefore, it is in the direction of the hoop.

The magnitude of the velocity, |[tex]\mathbf{v_{tan,t}}[/tex]| = ω×r

∴ |[tex]\mathbf{v_{tan, t}}[/tex]| = 2.60 × 0.6 = 1.56

Direction = Positive x-direction (Direction of motion of the hoop)

The velocity vector, [tex]\mathbf{v_{tan, t}}[/tex] = 1.56·i

The velocity due to the translational of the hoop, [tex]\mathbf{v_{htr}}[/tex] = 1.56·i

The velocity at the top of the hoop, [tex]\mathbf{v_{t}}[/tex] = [tex]\mathbf{v_{tan, t}}[/tex] + [tex]\mathbf{v_{htr}}[/tex]

[tex]\mathbf{v_{tan, t}}[/tex] = [tex]\mathbf{v_{htr}}[/tex]

∴ [tex]\mathbf{v_{t}}[/tex] = 2·[tex]\mathbf{v_{htr}}[/tex]

∴ [tex]\mathbf{v_{t}}[/tex] = 1.56·i + 1.56·i = 3.12·i

[tex]\mathbf{v_{t}}[/tex] = 3.12·i

The magnitude of the velocity is 3.12 m/s, the direction is forward (θ = 0°)

(ii) The direction of the velocity at the bottom

[tex]\mathbf{v_{tan, b}}[/tex] = [tex]-\mathbf{v_{tan, t}}[/tex]

Therefore;

The magnitude of the velocity at the bottom of the hoop, [tex]\mathbf{v_{b}}[/tex]

[tex]\mathbf{v_{b}}[/tex] = [tex]\mathbf{v_{tan, b}}[/tex] + [tex]\mathbf{v_{htr}}[/tex] = [tex]-\mathbf{v_{tan, t}}[/tex] + [tex]\mathbf{v_{htr}}[/tex]

[tex]\mathbf{v_{b}}[/tex] = -1.56·i + 1.56·i = 0

The velocity vector at the lowest point on the hoop, [tex]\mathbf{v_{b}}[/tex] = 0

The magnitude of the velocity vector at the bottom, [tex]\mathbf{v_{b}}[/tex] = 0

(iii) The velocity midway between the top and bottom of the hoop on the

right is given as follows;

The tangential velocity, [tex]\mathbf{v_{tan, m}}[/tex] = 1.56·j (acting downwards)

Sum of the velocity, [tex]\mathbf{v_{m}}[/tex] = [tex]\mathbf{v_{tan, m}}[/tex] + [tex]\mathbf{v_{htr}}[/tex]

∴ [tex]\mathbf{v_{m}}[/tex] = -1.56·j + 1.56·i  

The velocity vector midway, [tex]\mathbf{v_{m}}[/tex] = 1.56·i  - 1.56·j

The magnitude = √(1.56² + 1.56²) = (√2)·1.56 m/s ≈ 2.206 m/s

The direction of the velocity, θ = [tex]arctan \left(-\dfrac{1.56}{1.56} \right)[/tex] = -45°

The direction of the velocity, θ = -45°

(d) The velocity at the above points relative to someone moving along with

the hoop, with a speed, v = [tex]\mathbf{v_{htr}}[/tex] are;

Relative translational velocity, [tex]\mathbf{v_{rhtr}}[/tex] = v - [tex]\mathbf{v_{htr}}[/tex] = 0

(i) The velocity vector at the highest point [tex]\mathbf{v_{t}}[/tex] = [tex]\mathbf{v_{tan, t}}[/tex] + [tex]\mathbf{v_{rhtr}}[/tex] = [tex]\mathbf{v_{tan, t}}[/tex] = 1.56·i

The velocity vector at the highest point [tex]\mathbf{v_{t}}[/tex] = 1.56·i

The magnitude = 1.56 m/s

The direction =

(ii) The velocity at the lowest point [tex]\mathbf{v_{b}}[/tex] = [tex]\mathbf{v_{tan, b}}[/tex] + [tex]\mathbf{v_{rhtr}}[/tex]  = [tex]-\mathbf{v_{tan, t}}[/tex] + 0 = -1.56·i

The velocity vector at the lowest point [tex]\mathbf{v_{b}}[/tex] = -1.56·i (acting backwards)

The magnitude = 1.56 m/s

The direction = 180°

(iii) Velocity at the mid right hoop,  [tex]\mathbf{v_{m}}[/tex] = [tex]\mathbf{v_{tan, m}}[/tex] +  [tex]\mathbf{v_{rhtr}}[/tex] = -1.56·j

Velocity vector at the mid right hoop,  [tex]\mathbf{v_{m}}[/tex] = -1.56·j (acting downwards)

The magnitude = 1.56 m/s

The direction = -90°

Learn more here:

https://brainly.com/question/6756643