Respuesta :
Answer:
0.99
Step-by-step explanation:
Given,
Pink gumballs = 3,
Red gumballs = 4,
Green gumballs = 2,
So, total gumballs = 3 + 4 + 2 = 9,
Thus, total ways of selecting 5 gumball = [tex]^9C_5[/tex]
[tex]=\frac{9!}{5!4!}[/tex]
[tex]=\frac{9\times 8\times 7\times 6}{24}[/tex]
[tex]=9\times 2\times 7[/tex]
[tex]=126[/tex]
Also, the total ways of selecting no red gumballs = [tex]^4C_0\times ^5C_5[/tex]
= 1 × 1
= 1
So, the probability of no red gumballs in 5 drawn
[tex]=\frac{1}{126}[/tex]
Hence, the probability that a red gumball is drawn if there are 5 drawings
= 1 - probability of no red gumballs
[tex]=1-\frac{1}{126}[/tex]
[tex]=\frac{125}{126}[/tex]
≈ 0.99
Answer:
probability of drawn red balls 0.99
Step-by-step explanation:
Given data: 3 pink ball
4 red gumballs
2 green gumballs
total number of drawing is 5
probability of drawn red balls is given as
P = 1 - Probability of no red ball drawn
[tex]= 1 - \frac{^4C_0 \times ^5C_5}{ ^9C_5} [/tex]
[tex]= 1 - \frac{1}{126}[/tex]
[tex]= \frac{125}{126}[/tex]
= 0.99