In ΔQRS, the measure of ∠S=90°, the measure of ∠R=69°, and QR = 19 feet. Find the length of RS to the nearest tenth of a foot. Answer quickly please.

Respuesta :

Answer:7 feet

Step-by-step explanation:

Since in a right angled triangle,

For an angle [tex]\alpha[/tex],[tex]opposite=(Sin\alpha )hypotenuse[/tex]

[tex]adjacent=(Cos\alpha )hypotenuse[/tex]

In the given triangle,

For the angle R,

[tex]adjacent=RS[/tex]

[tex]hypotenuse=QR[/tex]

Since [tex]adjacent=(Cos\alpha )hypotenuse[/tex]

[tex]RS=Cos(69^{0})\times 19=0.36\times 19=6.8feet[/tex]

So,[tex]RS[/tex] is approximately [tex]7[/tex] feet.