Respuesta :
Answer:37 paintings of $50 and 15 paintings of $75
Step-by-step explanation:
Let [tex]x[/tex] be the number of paintings Ella sells for $[tex]50[/tex].
Let [tex]y[/tex] be the number of paintings Ella sells for $[tex]75[/tex].
Profit made through $[tex]50[/tex] paintings is [tex]50x[/tex]
Profit made through $[tex]75[/tex] paintings is [tex]75y[/tex]
So,total profit is given by [tex]50x+75y[/tex]
It is given that total profit is $[tex]2975[/tex]
So,[tex]50x+75y=2975[/tex] ..(i)
Given that the total number of prints is [tex]52[/tex]
So,[tex]x+y=52[/tex] ..(ii)
using (i) and (ii),
[tex]50x+75(52-x)=2975\\50x+3900-75x=2975\\25x=925\\x=37[/tex]
[tex]y=52-x=52-37=15[/tex]
Answer:
37 small prints and 15 large prints
Step-by-step explanation:
Ella sold a total of 52 prints for a total of $ 2,975. Small prints cost $ 50 and large prints cost $ 75.
Let us denote the number of small prints sold by [tex]x[/tex] and the number of large prints sold by [tex]y[/tex].
Total number of prints sold = [tex]x+y=52[/tex] -[tex](i)[/tex]
Total amount = [tex]50x+75y=2975[/tex] -[tex](ii)[/tex]
Multiplying first equation with 50 and subtacting it from second equation,
[tex]50x+75y-50x-50y=2975-50(52)\\25y=375\\y=15\\x=37[/tex]
∴ Ella sold 37 small prints and 15 large prints.