Respuesta :

Answer:g=9.79[tex]ms^{-2}[/tex],A object of mass [tex]m[/tex] at the surface of earth experiences a force [tex]mg[/tex]

Explanation:

Let [tex]M[/tex] be the mass of earth.

Let [tex]R[/tex] be the radius of earth.

Let [tex]G[/tex] be the universal gravitational constant.

Given,

[tex]M=5.96\times 10^{24}Kg[/tex]

[tex]R=6.37\times 10^{6}m[/tex]

[tex]G=6.67259 \times 10^{-11}[/tex][tex]Nm^{2}Kg^{-2}[/tex]

Let [tex]g[/tex] be the acceleration due to gravity.

Then,[tex]g=\dfrac{GM}{R^{2}}[/tex]

[tex]g=\frac{6.67259 \times 10^{-11}\times 5.96\times 10^{24}}{(6.37\times 10^{6})^{2}}[/tex]

[tex]g=9.79ms^{-2}[/tex]

A object of mass [tex]m[/tex] at the surface of earth experiences a force [tex]mg[/tex]