Respuesta :

Answer:

b

Step-by-step explanation:

Using the trigonometric identities

cot x = [tex]\frac{cosx}{sinx}[/tex] and tan x = [tex]\frac{sinx}{cosx}[/tex] thus

[tex]\frac{cos0}{cot0}[/tex] + tanΘ × cosΘ

= [tex]\frac{cos0}{\frac{cos0}{sin0} }[/tex] + [tex]\frac{sin0}{cos0}[/tex] × cosΘ

= cosΘ × [tex]\frac{sin0}{cos0}[/tex] + sinΘ

= sinΘ + sinΘ

= 2sinΘ → b