Respuesta :

Answer:

The given equation is never possible i.e cos ( A - B ) ≠ cos A - cos B

Step-by-step explanation:

Given as :

Is cos ( A - B ) = cos A - cos B

To check this possibility , Let us put the value of angle A and B on both side of equation

Now, Let A = 60°    and  B = 30°

From Left hand side equation

cos ( A - B ) = cos ( 60°  - 30° )

Or, cos ( A - B ) = cos 30°

∴   cos ( A - B ) = [tex]\frac{\sqrt{3} }{2}[/tex]

or, cos ( A - B ) = 0.866

From Right hand side equation

cos A - cos B  =  cos  60° - cos  30°  

Or,  cos A - cos B  =   [tex]\frac{1}{2}[/tex] -  [tex]\frac{\sqrt{3} }{2}[/tex]

∴,  cos A - cos B  = 0.5 - 0.866

I.e  cos A - cos B  = - 0.366

So, Left hand side ≠ Right hand side

Since while equating the values of angle A and b in the given equation on both sides, we get that the value of both sides are not equal , Thus we can say that the given equation is not equal to each other .

Hence given equation is never possible i.e cos ( A - B ) ≠ cos A - cos B Answer