Respuesta :

Answer:

The measurement of ∠APB=80°

Step-by-step explanation:

Given:

In quadrilateral ABCD ∠C=100° and ∠D=60°  .

Now, let ∠PAB=[tex]x[/tex] and ∠PBA=[tex]y[/tex]

As, sum of all interior angles of a quadrilateral is 360°.

∠A+∠B+∠C+∠D=360°

⇒[tex]2x+2y+100+60=360[/tex]    

(as the line AP and BP bisect ∠A and ∠B respectively so, ∠A=2x and ∠B=2y)

⇒[tex]2x+2y+160=360[/tex]

subtracting 160 on both sides

⇒[tex]2x+2y=200[/tex]

dividing by 2 on both the sides

⇒[tex]\frac{2x}{2} +\frac{2y}{2}=\frac{200}{2}[/tex]

⇒[tex]x+y=100[/tex]  ........(1)

Now, in triangle PAB:

Sum of interior angles of triangle is 180°.

∠PAB+∠PBA+∠APB=180°

Let ∠APB be z.

⇒[tex]x+y+z=180[/tex]

Putting the value from the above equation (1)

⇒[tex]100+z=180[/tex]

Subtracting 100 from both sides

⇒[tex]z=80[/tex]

⇒ ∠APB=80°

Therefore, the measurement of  ∠APB=80° .