Respuesta :

Answer:

(0,1) and (-2,9)

Step-by-step explanation:

A point (x,y) lies on the graph of f(x) = [tex](\frac{1}{3} )^{x}[/tex] if it satisfies the condition y = [tex](\frac{1}{3} )^{x}[/tex]

(0,1):

        x = 0 and y = 1.

This point satisfies the required condition as

        [tex](\frac{1}{3} )^{0}[/tex] = 1

Hence, this point is on the graph of f(x) = [tex](\frac{1}{3} )^{x}[/tex]

(3,27):

        x = 3 and y = 27.

This point doesn't satisfy the required condition as

        [tex](\frac{1}{3} )^{3}[/tex] = [tex]\frac{1}{27}[/tex] 27

Hence, this point is not on the graph of f(x) = [tex](\frac{1}{3} )^{x}[/tex]

(-2,9):

        x = -2 and y = 9.

This point satisfies the required condition as

        [tex](\frac{1}{3} )^{-2}[/tex] = [tex]3^{2}[/tex] = 9

Hence, this point is on the graph of f(x) = [tex](\frac{1}{3} )^{x}[/tex]

(-1,[tex]-\frac{1}{3}[/tex]):

        x = -1 and y = [tex]-\frac{1}{3}[/tex].

This point satisfies the required condition as

        y = [tex](\frac{1}{3} )^{-1}[/tex] = [tex]3^{1}[/tex] = 3 ≠ [tex]-\frac{1}{3}[/tex]

Hence, this point is not on the graph of f(x) = [tex](\frac{1}{3} )^{x}[/tex]