Respuesta :

Answer:

Part a) [tex]G.F=13\ units[/tex]

Part b) [tex]A.F=39\ units[/tex]

Part c) [tex]F.C=22\ units[/tex]

Part d) [tex]G.B=24\ units[/tex]

Part e) [tex]D.B=36\ units[/tex]

Step-by-step explanation:

we know that

The centroid of a triangle is the point where the three median.s coincide.

The centroid is located two thirds of the distance from any vertex of the triangle.

step 1

Find the value of A.F.

we know that

[tex]A.G=\frac{2}{3} A.F[/tex]

we have

[tex]A.G=26\ units[/tex]

substitute

[tex]26=\frac{2}{3} A.F[/tex]

Solve for A.F.

[tex]A.F=26(3)/2[/tex]

[tex]A.F=39\ units[/tex]

step 2

Find the value of G.F.

[tex]G.F=\frac{1}{3} A.F[/tex]

substitute the value of A.F

[tex]G.F=\frac{1}{3} (39)=13\ units[/tex]

step 3

Find the value of F.C.

Remember that a median of a triangle is a line segment from one vertex to the mid-point on the opposite side of the triangle

so

[tex]F.C=\frac{1}{2}B.C[/tex]

we have

[tex]B.C=44\ units[/tex]

substitute

[tex]F.C=\frac{1}{2}(44)[/tex]

[tex]F.C=22\ units[/tex]

step 4

Find the value of D.B.

[tex]D.G=\frac{1}{3} D.B[/tex]

we have

[tex]D.G=12\ units[/tex]

substitute

[tex]12=\frac{1}{3} D.B[/tex]

[tex]D.B=12(3)=36\ units[/tex]

step 5

Find the value of G.B

[tex]G.B=\frac{2}{3} D.B[/tex]

substitute the value of D.B.

[tex]G.B=\frac{2}{3} (36)[/tex]

[tex]G.B=24\ units[/tex]