Answer:
The original award is of $66666.67 and David receives the most money.
Step-by-step explanation:
Let us assume that the total prize money is $x.
Now, Ailin receives $10000 plus [tex]\frac{1}{5}[/tex] of what then remains, and David receives $16000 plus [tex]\frac{1}{4}[/tex] of what then remains, and finally Rashaad receives $18000.
So,from the conditions given above we can write
[tex][10000 + \frac{x - 10000}{5}] + [16000 + (x - 10000 - \frac{x - 10000}{5}) \times \frac{1}{4}] + 18000 = x[/tex]
⇒ [tex]10000 + \frac{x}{5} - 2000 + 16000 + \frac{x}{4} - 2500 - \frac{x}{20} + 500 + 18000 = x[/tex]
⇒ [tex](\frac{x}{5} + \frac{x}{4} - \frac{x}{20}) + 40000 = x[/tex]
⇒ [tex]\frac{2}{5} x + 40000 = x[/tex]
⇒ [tex]\frac{3}{5} x = 40000[/tex]
⇒ x = $66666.67
Therefore, Ailin receives [tex][10000 + \frac{66666.67 - 10000}{5}][/tex]
= $21333.34
And David receives [tex][16000 + (66666.67 - 10000 - \frac{66666.67 - 10000}{5}) \times \frac{1}{4}][/tex]
= $27333.33
The original award is of $66666.67 and David receives the most money. (Answer)