Respuesta :

Answer:

The coordinates of the point that is 1/5 the way from A to B  is [tex](x,y) = (-5,\frac{26}{5})[/tex]

Step-by-step explanation:

Here, the given points are: A (-7,4) and B (3,10)

Let us assume  the point M(x,y) on AB is such that

AM : AB = 1 : 5

⇒ AM  : (AB - AM) = 1 : (5-1)  = 1: 4

AM  : MB  = 1 : 4

Now, The Section Formula states the coordinates of point (x,y) on any line dividing the line in the ratio m1 : m2

[tex](x,y) = (\frac{m_2x_1+m_1x_2}{m_1+m_2} ,\frac{m_2y_1+m_1y_2}{m_1+m_2}  )[/tex]

Here, in the given equation, m1: m2 = 1:4

So, the coordinates M(x,y) is given as:

[tex](x,y) = (\frac{(-7)(4) + 1 (3)}{1+ 4} ,\frac{4(4) + 1(10)}{1+4}  )\\\implies (x,y) = (\frac{-28+3}{5} ,\frac{16+10}{5} )  = (\frac{-25}{5} ,\frac{26}{5} )\\\implies (x,y) = (-5,\frac{26}{5} )[/tex]

Hence, the coordinates of the point that is 1/5 the way

from A to B  is [tex](x,y) = (-5,\frac{26}{5})[/tex]