Respuesta :

Answer:

The standard parabolic equation is

[tex]y = 0.25(x  +3)^2 -19[/tex]

Step-by-step explanation:

Here, the vertex of parabola is (h,k)  = ( -3,-19)

The points on the given parabola is ( 5,-3)

Now, the general form of the Parabolic Equation is [tex]y = a(x - h)^2 + k[/tex]

(1) Substitute Coordinates (h,k) for the Vertex

[tex]y = a(x - h)^2 + k \implies y = a ( x - (-3)) ^2 + (-19)\\or, y = a( x+3)^2 - 19[/tex]

(2)Substitute point Coordinates (x,y)

[tex]y = a( x+3)^2 - 19  \implies-3 = a(5+3)^2 -19\\or, -3 = 64 a -19\\\implies 64 a = 16\\or, a = 16/64 = 0.25[/tex]

⇒ a  =0.25

Substituting the values of (h,k) and a in the standard for, we get,

The standard parabolic equation is [tex]y = 0.25(x  +3)^2 -19[/tex]